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In this paper, we introduce the concepts of ∫ Γ2𝜆𝐼  statistical convergence and 

strongly ∫ Γ2𝜆𝐼  of real numbers. It is also shown that Γ2𝜆𝐼  statistical 

convergence and strongly ∫ Γ2𝜆𝐼  are equivalent for analytic sequences of real 

numbers. We introduce certain new double sequence spaces of ∫ Γ2𝜆 of fuzzy 
real numbers defined by 𝐼 − convergence using sequences of Musielak-Orlicz 
functions and also study some basic topological and algebraic properties of 
these spaces, investigate the inclusion relations between these spaces. 
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1. Introduction

*Consider w, χ and Λ denote the classes of all, gai
and analytic scalar valued single sequences, 
respectively.We write w2 for the set of all complex 
sequences (xmn), where m, n ∈ ℕ, the set of positive 
integers. Then, w2 is a linear space under the 
coordinate wise addition and scalar multiplication. 
Throughout this article the space of regularly gai 
multiple sequence defined over a semi-normed 
space (X, q), semi-normed by q will be denoted by 
χmn

2R (q) and Λmn
2R (q) For X = ℂ, the field of complex

numbers, these spaces represent the corresponding 
scalar sequence spaces. Some initial works on double 
sequence spaces is found in Bromwich (2005). Later 
on, they were investigated by Hardy (1904), Moricz 
(1991), Moricz and Rhoades (1988), Basarir and 
Solancan (1999), Tripathy (2003), Turkmenoglu 
(1999), and many others. We procure the following 
sets of double sequences: 

ℳu(t): = {(xmn) ∈ w2: sup
m,n∈N

|xmn|tmn < ∞}, 

𝒞p(t): = {(xmn) ∈ w2: p − lim
m,n→∞

|xmn − ł|tmn

= 1    for    some    ł ∈ ℂ}, 

𝒞0p(t): = {(xmn) ∈ w2: p − lim
m,n→∞

|xmn|tmn = 1}, 
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ℒu(t): = {(xmn) ∈ w2: ∑

∞

m=1

∑

∞

n=1

|xmn|tmn < ∞}, 

𝒞bp(t): = 𝒞p(t) ⋂ ℳu(t) and 𝒞0bp(t) = 𝒞0p(t) ⋂ ℳu(t); 

where, t = (tmn) is the sequence of strictly positive 
reals tmn for all m, n ∈ ℕ and p − limm,n→∞ denotes 

the limit in the Pringsheim (1900) sense. In the case 
tmn = 1 for all m, n ∈ ℕ; ℳu(t), 𝒞p(t), 𝒞0p(t), ℒu(t), 

𝒞bp(t) and 𝒞0bp(t) reduce to the sets ℳu, 𝒞p, 𝒞0p, ℒu, 

𝒞bp and 𝒞0bp, respectively. Now, we may summarize 

the knowledge given in some document related to 
the double sequence spaces. Gökhan and Çolak 
(2004, 2005) have proved that ℳu(t) and 𝒞p(t), 

𝒞bp(t) are complete paranormed spaces of double 

sequences and gave the α −, β −, γ − duals of the 
spaces ℳu(t) and 𝒞bp(t). Zeltser (2001) has 

essentially studied both the theory of topological 
double sequence spaces and the theory of 
summability of double sequences. Mursaleen and 
Edely (2003) and Tripathy (2003) have 
independently introduced the statistical 
convergence and Cauchy for double sequences and 
given the relation between statistical convergent and 
strongly Cesàro summable double sequences. Altay 
and Başar (2005) have defined the spaces ℬ𝒮, ℬ𝒮(t), 
𝒞𝒮p, 𝒞𝒮bp, 𝒞𝒮r and ℬ𝒱 of double sequences 

consisting of all double series whose sequence of 
partial sums are in the spaces ℳu, ℳu(t), 𝒞p, 𝒞bp, 𝒞r 

and ℒu, respectively, and also examined some 
properties of those sequence spaces and determined 
the α − duals of the spaces ℬ𝒮, ℬ𝒱, 𝒞𝒮bp and the 
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β(ϑ) − duals of the spaces 𝒞𝒮bp and 𝒞𝒮r of double 

series. Başar and Sever (2009) have introduced the 
Banach space ℒq of double sequences corresponding 

to the well-known space ℓq of single sequences and 

examined some properties of the space ℒq. 

Subramanian and Misra (2011) have studied the 
space χM

2 (p, q, u) of double sequences and gave some 
inclusion relations. 

The class of sequences which are strongly Cesàro 
summable with respect to a modulus was introduced 
by Maddox (1986) as an extension of the definition 
of strongly Cesàro summable sequences. Connor 
(1988) further extended this definition to a 
definition of strong A − summability with respect to 

a modulus where A = (an,k) is a nonnegative regular 

matrix and established some connections between 
strong A − summability, strong A − summability 
with respect to a modulus, and A − statistical 
convergence. In the notion of convergence of double 
sequences was presented by Pringsheim (1900). 
Also, the four dimensional matrix transformation 
(Ax)k,ℓ = ∑∞

m=1 ∑∞
n=1 akℓ

mnxmn was studied 

extensively by Hamilton (1936). 
We need the following inequality in the sequel of 

the paper. For a, b ≥ 0 and 0 < p < 1, we have  
 

(a + b)p ≤ ap + bp.               
 
The double series ∑∞

m,n=1 xmn is called 

convergent if and only if the double sequence (smn) 
is convergent, where smn = ∑m,n

i,j=1 xij(m, n ∈ ℕ). 

A sequence x = (xmn)is said to be double analytic 
if supmn|xmn|1/m+n < ∞. The vector space of all 
double analytic sequences will be denoted by Λ2. A 
sequence x = (xmn) is called double gai sequence if 

((m + n)! |xmn|)
1/m+n

→ 0 as m, n → ∞. The double 

gai sequences will be denoted by χ2. Let ϕ =
{finite    sequences}. 

Consider a double sequence x = (xij). The 

(m, n)th section x[m,n] of the sequence is defined by 
x[m,n] = ∑

i,j=0
m,n

xijℑij for all m, n ∈ ℕ; where ℑij 

denotes the double sequence whose only non zero 

term is a 
1

(i+j)!
 in the (i, j)th place for each i, j ∈ ℕ. 

An FK-space (or a metric space) X is said to have 
AK property if (ℑmn) is a Schauder basis for X. Or 
equivalently x[m,n] → x. 

An FDK-space is a double sequence space 
endowed with a complete metrizable; locally convex 
topology under which the coordinate mappings x =
(xk) → (xmn)(m, n ∈ ℕ) are also continuous. 

Let M and Φ are mutually complementary 
modulus functions. Then, we have: 

 
(i) For all u, y ≥ 0,  
uy ≤ M(u) + Φ(y), (Young′s    inequality)                      
 
(ii) For all u ≥ 0,  
 
uη(u) = M(u) + Φ(η(u)).                               

 

(iii) For all u ≥ 0, and 0 < λ < 1,  
 
M(λu) ≤ λM(u)                                
 

Lindenstrauss and Tzafriri (1971) used the idea 
of Orlicz function to construct Orlicz sequence space, 

 

ℓM = {x ∈ w: ∑

∞

k=1

M (
|xk|

ρ
) < ∞,    for    some    ρ > 0}, 

 
the space ℓM with the norm, 
 

‖x‖ = inf {ρ > 0: ∑

∞

k=1

M (
|xk|

ρ
) ≤ 1}, 

 
becomes a Banach space which is called an Orlicz 
sequence space. For M(t) = tp(1 ≤ p < ∞), the 
spaces ℓM coincide with the classical sequence space 
ℓp. 

A sequence f = (fmn) of modulus function is 
called a Musielak-modulus function. A sequence g =
(gmn) defined by: 

 
gmn(v) = sup{|v|u − (fmn)(u): u ≥ 0}, m, n = 1,2, … 
 
is called the complementary function of a Musielak-
modulus function f. For a given Musielak modulus 
function f, the Musielak-modulus sequence space tf is 
defined as follows 
 
tf = {x ∈ w2: Mf(|xmn|)1/m+n → 0    as    m, n → ∞}, 

 
where, Mf is a convex modular defined by: 
 

Mf(x) = ∑

∞

m=1

∑

∞

n=1

fmn(|xmn|)1/m+n, x = (xmn) ∈ tf. 

 
We consider tf equipped with the Luxemburg 

metric: 
 

d(x, y) = ∑∞
m=1 ∑∞

n=1 fmn (
|xmn|1/m+n

mn
). 

 
If X is a sequence space, we give the following 

definitions: 
 

(i) 𝑋′ = the continuous dual of X; 
(ii) Xα = {a = (amn): ∑

m,n=1
∞ |amnxmn| <

∞,    for    each    x ∈ X}; 
(iii) Xβ = {a =

(amn): ∑
m,n=1
∞

amnxmn    is    convegent,    for each    x ∈ X}; 

(iv) Xγ = {a = (amn): supmn≥1|∑M,N
m,n=1 amnxmn| <

∞, for each x ∈ X}; 

(v) Let X be an FK −space⊃ ϕ; then Xf =
{f(ℑmn): f ∈ 𝑋′}; 

(vi) Xδ = {a = (amn): supmn|amnxmn|
1

m
+n <

∞,    for each x ∈ X}; 

 
Xα, Xβ, Xγ are called α −     (or Köthe-Toeplitz) 

dual of X, β − (orgeneralized-Köthe-
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Toeplitz)    dualof X, γ −dualofX,δ −dualof 
Xrespectively. Xα is defined by Gupta and Kampthan . 
It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ, but Xβ ⊂ Xγ 
does not hold, since the sequence of partial sums of a 
double convergent series need not to be bounded. 

The notion of difference sequence spaces (for 
single sequences) was introduced by Kızmaz (1981) 
as follows: 

 
Z(Δ) = {x = (xk) ∈ w: (Δxk) ∈ Z} 

 
for Z = c, c0 and ℓ∞, where Δxk = xk − xk+1 for all 
k ∈ ℕ. 

Here, c, c0 and ℓ∞ denote the classes of 
convergent, null and bounded scalar valued single 
sequences respectively. The difference sequence 
space bvp of the classical space ℓp is introduced and 

studied in the case 1 ≤ p ≤ ∞ by Altay and Başar 
(2005) and in the case 0 < p < 1 by Altay and Başar 
(2005). The spaces c(Δ), c0(Δ), ℓ∞(Δ) and bvp are 

Banach spaces normed by: 
 

‖x‖ = |x1| + sup
k≥1

|Δxk| 

 
and 

‖x‖bvp
= (∑

∞

k=1

|xk|p)

1
p

, (1 ≤ p < ∞). 

 
Later on the notion was further investigated by 

many others. We now introduce the following 
difference double sequence spaces defined by: 

 
Z(Δ) = {x = (xmn) ∈ w2: (Δxmn) ∈ Z} 
 
where, Z = Λ2, χ2 and Δxmn = (xmn − xmn+1) −
(xm+1n − xm+1n+1) = xmn − xmn+1 − xm+1n +
xm+1n+1 for all m, n ∈ ℕ. 

2. Some new integrated statistical convergence 
sequence spaces of fuzzy numbers 

The main aim of this article is to introduce the 
following sequence spaces and examine topological 
and algebraic properties of the resulting sequence 
spaces. Let p = (pmn) be a sequence of positive real 
numbers for all m, n ∈ ℕ, f = (fmn) be a Musielak-
modulus function, 

(X, ‖(d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

) be a 

p −metric space, and (λrs
−1) be a sequence of non-

zero scalars and μmn(X) = d̅(trs, 0̅) be a sequence of 
fuzzy numbers, we define the following sequence 
spaces as follows: 

 

[Γfμ
2q

, ‖(d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

] = 

lim
r,s→∞

|{m, n

∈ Irs: [fmn (‖μmn(x), (
d(x1, 0), d(x2, 0), … ,

d(xn−1, 0)
)‖

p

)]

qmn

≥ ε}|

= 0, 
 

uniformly in r, s. 

In this case, we write Xmn → 0̅(S̆λ
F). The set of all 

statistically convergent sequences is denoted by S̆λ
F. 

Let X = (Xmn) be a sequence of fuzzy numbers 
and q = (qmn) be a sequence of strictly positive real 
numbers. Then the sequence X = (Xmn) is said to be 
strongly λ −convergent if there is a fuzzy number 0̅ 
such that, 

 

[Γfμ
2q

, ‖(d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

] = 

lim
r,s→∞

∑

m∈Irs

∑

n∈Irs

 

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), ⋯ , d(xn−1, 0))‖
p

)]
qmn

= 0, 

 
uniformly in r, s. 

In this case, we write Xmn → 0̅(w̆λ
F, q). The set of 

all strongly λ −convergent sequences is denoted by 

(w̆λ
F, q). 

Let X = (Xmn) be a sequence of fuzzy numbers. 
Then the sequence X = (Xmn) of fuzzy numbers is 
said to be double analytic if the set {trs: r, s ∈ ℕ} of 
fuzzy numbers is double analytic and it is denoted by 
Λ̆2F. In this section we give some inclusion relations 
between strongly λ −convergence and 
λ −statistically convergence and show that they are 
equivalent for almost bounded sequences of fuzzy 
numbers. We also study the inclusion S̆2F ⊂ S̆2F 
under certain restrictions on the sequence Λ2 =
(λrs). 

Let n ∈ ℕ and X be a real vector space of 
dimension w, where n ≤ m. A real valued function 
dp(x1, … , xn) =∥ (d1(x1, 0), … , dn(xn, 0)) ∥p on X 

satisfying the following four conditions: 
 
(i) ∥ (d1(x1, 0), … , dn(xn, 0)) ∥p= 0 if and and only if 

d1(x1, 0), … , dn(xn, 0) are linearly dependent, 
(ii) ∥ (d1(x1, 0), … , dn(xn, 0)) ∥p is invariant under 

permutation, 

(iii) ∥ (αd1(x1, 0), … , dn(xn, 0)) ∥p= |α|. 

∥ (d1(x1, 0), … , dn(xn, 0)) ∥p, α ∈ ℝ, 

(iv) dp((x1, y1), (x2, y2), … , (xn, yn)) =

(dX(x1, x2, … , xn)p + dY(y1, y2, … , yn)p)1/p for 1 ≤
p < ∞; (or) 
(v) d((x1, y1), (x2, y2), … , (xn, yn)): =
sup{dX(x1, x2, … , xn), dY(y1, y2, … , yn)}, 
 
for x1, x2, … , xn ∈ X, y1, y2, … , yn ∈ Y is called the p 
product metric of the Cartesian product of n metric 
spaces. 
 
Definition 2.1: Let X be a linear metric space. A 
function ρ: X → ℝ is called paranorm, if 
 
(1) ρ(x) ≥ 0, for all x ∈ X; 
(2) ρ(−x) = ρ(x), for all x ∈ X; 
(3) ρ(x + y) ≤ ρ(x) + ρ(y), for all x, y ∈ X; 
(4) If (σmn) is a sequence of scalars with σmn → σ as 
m, n → ∞ and (xmn) is a sequence of vectors with 
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ρ(xmn − x) → 0 as m, n → ∞, then ρ(σmnxmn − σx) →
0 as m, n → ∞.  

A paranorm w for which ρ(x) = 0 implies x = 0 is 
called total paranorm and the pair (X, w) is called a 
total paranormed space. It is well known that the 
metric of any linear metric space is given by some 
total paranorm (Wilansky, 1984). 

The notion of deal convergence was introduced 
first by Kostyrko et al. (2000) as a generalization of 
statistical convergence which was further studied in 
toplogical spaces by Kumar (2007) and Kumar and 
Kumar (2008), and also more applications of ideals 
can be deals with various authors by Hazarika (2009, 
2012a,b,c, 2013a,b, 2014a,b,c,d,), Hazarika and Savas 
(2011), Hazarika et al. (2014), Hazarika and Kumar 
(2014), Tripathy and Hazarika (2008, 2009, 2011). 
 
Definition 2.2: A family I ⊂ 2Y of subsets of a non 
empty set Y is said to be an ideal in Y if 
 
(1) ϕ ∈ I 
(2) A, B ∈ I imply A ⋃ B ∈ I 
(3) A ∈ I, B ⊂ A imply B ∈ I. 

 
While an admissible ideal I of Y further satisfies 

{x} ∈ I for each x ∈ Y. Given I ⊂ 2ℕ×ℕ be a non trivial 
ideal in ℕ × ℕ. A sequence (xmn)m,n∈ℕ×ℕ in X is said 
to be I − convergent to 0 ∈ X, if for each ε > 0 the set 

A(ε) = {m, n ∈ ℕ × ℕ: ∥ (d1(x1, 0), … , dn(xn, 0)) −

0 ∥p≥ ε} belongs to I. 

 
Definition 2.3: A non-empty family of sets F ⊂ 2X is 
a filter on X if and only if 
 
(1) ϕ ∈ F 
(2) for each A, B ∈ F, we have imply A ⋂ B ∈ F 
(3) each A ∈ F and each A ⊂ B, we have B ∈ F.  
 
Definition 2.4: An ideal I is called non-trivial ideal if 
I ≠ ϕ and X ∉ I. Clearly I ⊂ 2X is a non-trivial ideal if 
and only if F = F(I) = {X − A: A ∈ I} is a filter on X.  
 
Definition 2.5: A non-trivial ideal I ⊂ 2X is called (i) 

admissible if and only if {{x}: x ∈ X} ⊂ I. (ii) maximal 

if there cannot exists any non-trivial ideal J ≠ I 
containing I as a subset.  

If we take I = If = {A ⊆ ℕ ×
ℕ: A    is    a    finite    subset}. Then If is a non-trivial 
admissible ideal of ℕ and the corresponding 
convergence coincides with the usual convergence. If 
we take I = Iδ = {A ⊆ ℕ × ℕ: δ(A) = 0} where δ(A) 
denote the asymptotic density of the set A. Then Iδ is 
a non-trivial admissible ideal of ℕ × ℕ and the 
corresponding convergence coincides with the 
statistical convergence. 

Let D denote the set of all closed and bounded 
intervals X = [x1, x2] on the real line ℝ × ℕ. For 
X, Y ∈ D, we define X ≤ Y if and only if x1 ≤ y1 and 
x2 ≤ y2, d(X, Y) = max{|x1 − y1|, |x2 − y2|}, where 
X = [x1, x2] and Y = [y1, y2]. 

Then it can be easily seen that d defines a metric 
on D and (D, d) is a complete metric space. Also the 

relation "≤" is a partial order on D. A fuzzy number X 
is a fuzzy subset of the real line ℝ × ℝ i.e. a mapping 
X: R → J(= [0,1]) associating each real number t with 
its grade of membership X(t). 
 
Definition 2.6: A fuzzy number X is said to be (i) 
convex if X(t) ≥ X(s) ∧ X(r) = min{X(s), X(r)}, where 
s < t < r. (ii) normal if there exists t0 ∈ ℝ × ℝ such 
that X(t0) = 1. (iii) upper semi-continuous if for each 
ε > 0, X−1([0, a + ε]) for all a ∈ [0,1] is open in the 
usual topology of ℝ × ℝ.  

Let R(J) denote the set of all fuzzy numbers which 
are upper semicontinuous and have compact 
support, i.e. if X ∈ ℝ(J) × ℝ(J) the for any α ∈
[0,1], [X]α is compact, where [X]α = {t ∈ ℝ ×
ℝ: X(t) ≥ α,    ifα ∈ [0,1]}, [X]0 =closure of 
({t ∈ ℝ × ℝ: X(t) > α, ifα = 0}). 

The set ℝ of real numbers can be embedded ℝ(J) 
if we define r̅ ∈ ℝ(J) × ℝ(J) by 

 

r̅(t) = (
1, ift = r;
0, ift ≠ r

 

 
the absolute value, |X| of X ∈ ℝ(J) is defined by 
 

|X|(t) = (
max{X(t), X(−t)}, ift ≥ 0;
0, ift < 0

 

 
define a mapping d̅: ℝ(J) × ℝ(J) → ℝ+ ∪ {0} by 
 
d̅(X, Y) = sup

0≤α≤1
d([X]α, [Y]α). 

 

It is known that (ℝ(J), d̅) is a complete metric 

space. 
 
Definition 2.7: A metric on ℝ(J) is said to be 
translation invariant if d̅(X + Z, Y + Z) = d̅(X, Y), for 
X, Y, Z ∈ ℝ(J).  
 
Definition 2.8: A sequence X = (Xmn) of fuzzy 
numbers is said to be (i) convergent to a fuzzy 
number X0 if for every ε > 0, there exists a positive 
integer n0 such that d̅(Xmn , X0) < ε for all n ≥ n0. (ii) 
bounded if the set {Xmn: m, n ∈ ℕ} of fuzzy numbers 
is bounded.  
 
Definition 2.9: A sequence X = (Xmn) of fuzzy 
numbers is said to be (i) I-convergent to a fuzzy 
number X0 if for each ε > 0 such that, 
 
A = {m, n ∈ ℕ: d̅(Xmn, X0) ≥ ε} ∈ I. 

 
The fuzzy number X0 is called I −limit of the 

sequence (Xmn) of fuzzy numbers and we write I −
limXmn = X0. (ii) I −bounded if there exists M > 0 
such that, 

 
{m, n ∈ ℕ: d̅(Xmn, 0̅) > M} ∈ I. 
 
Definition 2.10: A sequence space EF of fuzzy 
numbers is said to be (i) solid (or normal) if (Ymn) ∈
EF whenever (Xmn) ∈ EF and d̅(Ymn, 0̅) ≤ d̅(Xmn, 0̅) 
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for all m, n ∈ ℕ. (ii) symmetric if (Xmn) ∈ EF implies 

(Xπ(mn)) ∈ EF where π is a permutation of ℕ × ℕ.  

Let K = {k1 < k2 < ⋯ } ⊆ ℕ and E be a sequence 
space. A K −step space of E is a sequence space, 

 

λmn
E = {(Xmpnp

) ∈ w2: (mpnp) ∈ E}. 

 

A canonical preimage of a sequence {(xmpnp
)} ∈

λK
E  is a sequence {ymn} ∈ w2 defined as: 

 

ymn = (
xmn, ifm, n ∈ E
0, otherwise.

 

 
A canonical preimage of a step space λK

E  is a set of 
canonical preimages of all elements in λK

E , i.e. y is in 
canonical preimage of λK

E  if and only if y is canonical 
preimage of some x ∈ λK

E . 
 
Definition 2.11: A sequence space EF is said to be 
monotone if EF contains the canonical pre-images of 
all its step spaces.  

The following well-known inequality will be used 
throughout the article. Let p = (pmn) be any 
sequence of positive real numbers with 0 ≤ pmn ≤
supmnpmn = G, D = max{1,2G − 1} then 

 
|amn + bmn|pmn ≤ D(|amn|pmn + |bmn|pmn) 
 
for all m, n ∈ ℕ and amn, bmn ∈ ℂ. 

 
Also |amn|pmn ≤ max{1, |a|G} for all a ∈ ℂ. 
First we procure some known results; those will 

help in establishing the results of this article. 
 
Lemma 2.12: A sequence space EF is normal implies 
EF is monotone. (For the crisp set case, one may 
refer to Kamthan and Gupta (1981)).  
 
Lemma 2.13: based on Lemma 5.1 of (Kostyrko et 
al., 2000) If I ⊂ 2ℕ is a maximal ideal, then for each 
A ⊂ ℕ we have either A ∈ I or ℕ − A ∈ I.  
 
Definition 2.14: A sequence X = (Xmn) of fuzzy 
numbers is a function X from the set ℕ × ℕ of natural 
numbers into L(ℝ) × L(ℝ). The fuzzy number Xmn 
denotes the value of the function m, n ∈ ℕ.  

We denote W2F denotes the set of all sequences 
X = (Xmn) of fuzzy numbers. 
 
Definition 2.15: A sequence X = (Xmn) of fuzzy 
numbers is said to be analytic if the set {Xmn: m, n ∈
ℕ} of fuzzy numbers is analytic.  

The notion of statistical convergence for a 
sequence of complex numbers was introduced by 
Fridy (1985) and many others. Over the years and 
under different names statistical convergence has 
been discussed in the different theories such as the 
theory of Fourier analysis, ergodic theory and 
number theory. Later on, it was further investigated 
from the sequence space point of view and linked 
with summability theory by Fridy (1985), Salat 
(1980), Connor (1988), and many others. This 

concept extends the idea to apply to sequences of 
fuzzy numbers with Kwon and Shim (2001), Et et al. 
(2005), Nuray and Savas (1995), and many others. 
 
Definition 2.16: The sequence X = (Xmn) of fuzzy 
numbers is said to be almost convergent to a fuzzy 

number 0̅ if limm,n→∞d(tpm,qn(X), 0̅) = 0 uniformly 

in m, n, where tpm,qn(X) =
1

(m+1)(n+1)
∑p

i=0 ∑q
j=0 (Xi+m,j+n)

1/((i+m)+(j+n))
.  

This means that for every ε > 0, there exists a 

p0q0 ∈ ℕ such that d(tpm,qn(X), 0̅) < ε, whenever 

p, q ≥ p0q0 and for all m, n. 
 
Definition 2.17: A sequence X = (Xmn) of fuzzy 
numbers is said to be statistically convergent to a 
fuzzy number 0̅ if for every ε > 0, 
 

lim
1
rs

|{m ≤ r, n ≤ s: d(Xmn
1/m+n

, 0̅) ≥ ε}| = 0. 

 
The set of all statistically convergent sequences 

of fuzzy numbers is denoted by S2F. 
We note that if a sequence X = (Xmn) of fuzzy 

numbers converges to a fuzzy number 0̅, then it is 
statistically converges to 0̅. But the converse 
statement is not necessarily valid. 

Let μ = (λrs) be a non-decreasing sequence of 
positive real numbers tending to infinity and λ11 = 1 
and λr+1,s+1 ≤ λrs + 1, for all r, s ∈ ℕ. 

The generalized de la Vallee-Poussin mean is 
defined by: 

 

trs(x) =
1

λrs
∑

p∈Ir

∑

q∈Is

|xmn|1/m+n 

 
where, Irs = [r, s − λrs + 1, rs]. A sequence x = (xmn) 
of complex numbers is said to be (V, λ) − summable 
to a number if trs(x) → L as r, s → ∞. 

3. Main results 

Theorem 3.1: If Γ2(X) ∈ S̆λ
2F and c ∈ ℝ, then 

(a) S̆λ
2F − limcΓ2(X) = cS̆λ

2F − limΓ2(X) 

(b) S̆λ
2F − limΓ2(X + Y) = S̆λ

2F − limΓ2(X) +

  S̆λ
2F − limΓ2(Y) 

 
Proof (a): Let Γ2(X) ∈ S̆λ

2F so that S̆λ
2F − limΓ2(X) =

0̅, c ∈ ℝ and ε > 0. Then the inequality, 
 

|{m, n

∈ Irs: [fmn (‖μmn(cx), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ ε}| ≤ 

|{m, n

∈ Irs: [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), ⋯ , d(xn−1, 0))‖
p

)]
qmn

≥
ε

|c|
}|, 

 
for all r, s ∈ ℕ. 
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Proof (b): Suppose that Γ2(X), Γ2(Y) ∈ S̆λ
2F so that 

S̆λ
2F − limΓ2(X) = 0̅ and S̆λ

2F − limΓ2(Y) = 0̅. By 
Minkowski’s inequality, we get, 
 

[fmn (‖μmn(x + y), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≤ 

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

+ 

[fmn (‖μmn(y), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

. 

 
Therefore given ε > 0, for all r, s ∈ ℕ, we have, 

|{m, n

∈ Irs: [fmn (‖μmn(x

+ y), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ ε}| ≤ 

|{m, n

∈ Irs: [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), ⋯ , d(xn−1, 0))‖
p

)]
qmn

≥
ε

2
}| + 

|{m, n

∈ Irs: [fmn (‖μmn(y), (d(x1, 0), d(x2, 0), ⋯ , d(xn−1, 0))‖
p

)]
qmn

≥
ε

2
}|. 

This completes the proof. 
 
The following theorem shows that λ − statistical 

convergence and strongly λ − convergence are 
equivalent for double analytic sequences of fuzzy 
numbers.  
 
Theorem 3.2: Let the sequence μ = (μmn) be double 
analytic and Γ2(X) be a sequence of fuzzy numbers. 
Then 
 

(a) Γ2(X) → 0̅(w̆λ
2F, μ) implies Γ2(X) → 0̅(S̆λ

2F, μ). 

(b) Λ2(X) → 0̅(S̆λ
2F, μ) imply Λ2(X) → 0̅(w̆λ

2F, μ). 

(c) S̆λ
2F ⋂ Λλ

2F = (w̆λ
2F, μ) ⋂ Λλ

2F.  

 
Proof (a): Let ε > 0 and Γ2(X) → 0̅(w̆λ

2F, μ) for all 

r, s ∈ ℕ, we have, 
 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ ε 

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ 

|{m, n

∈ Irs: [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ ε}| ⋅ min(εh, εH). 

 
Hence Γ2(X) ∈ S̆λ

2F. 
 
Proof (b): Suppose that Γ2(X) ∈ S̆2λ

2F ⋂ Λ2F. Since 
Γ2(X) ∈ Λ2F, we write, 

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≤ T, 

for all r, s ∈ ℕ, let 
 
Grs

= |{m, n

∈ Irs: [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ ε}| 

 
and 

 
Hrs

= |{m, n

∈ Irs: [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

< ε}|. 

 
then we have 

 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

= 

∑

m∈Grs

∑

n∈Grs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

+ 

∑

m∈Hrs

∑

n∈Hrs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≤  max (Th, TH)Grs + max(εh, εH). 
 
Taking the limit as ε → 0 and r, s → ∞, it follows 

that Γ2(X) ∈ (w̆λ
F, q). 

 
Proof (c): Follows from (a) and (b).  
 

Theorem 3.3: If liminfrs (
λrs

rs
) > 0, then S̆2F ⊂ S̆λ

2F.  

Proof: Let Γ2(X) ∈ S̆2F. For given ε > 0, we get 
 

|{m ≤ r, n

≤ s: [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ ε}| ⊃ Grs 

 
where Grs is in the Theorem of 3.2 (b). Thus, 

 

|{m ≤ r, n

≤ s: [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≥ ε}| ≥ Grs =
λrs

rs
. 

Taking limit as r, s → ∞ and using liminfrs (
λrs

rs
) >

0, we get Γ2(X) ∈ S̆λ
2F.  

 
Theorem 3.4: Let 0 < umn ≤ vmn and (umnvmn

−1 ) be 

double analytic. Then (w̆λ
2F, v) ⊂ (w̆λ

2F, u).  

 
Proof: Let Γ2(X) ∈ (w̆λ

2F, v). Let 

 
wmn

= [fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn
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for all r, s ∈ ℕ and λmn = umnvmn
−1  for all m, n ∈ ℕ. 

Then 0 < λmn ≤ 1 for all m, n ∈ ℕ. Let b be a 
constant such that 0 < b ≤ λmn ≤ 1 for all m, n ∈ ℕ. 

Define the sequences (kmn) and (ℓmn) as follows: 
For wmn ≥ 1, let (kmn) = (wmn) and ℓmn = 0 and for 
wmn < 1, let kmn = 0 and ℓmn = wmn. Then it is clear 
that for all m, n ∈ ℕ, we have wmn = kmn + ℓmn and 

wmn
λmn = kmn

λmn + ℓmn
λmn . Now it follows that kmn

λmn ≤

kmn ≤ wmn and ℓmn
λmn ≤ ℓmn

λ . Therefore, 
 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(wmn
λmn), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖

p
)]

qmn

= 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(kmn

+ ℓmn)λmn , (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

= 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(wmn), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

+ 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(ℓmn)λmn , (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

 

 
now for each r, s, 

 

 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(ℓmn)λ, (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

= 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn ((ℓmn)λ (
1

λrs
)

1−λ

) , (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]

qmn

≤ 

[ ∑

m∈Irs

∑

n∈Irs

[fmn ∥ ((μmn((ℓmn)λ)
λ

)
1/λ

, (d(x1, 0), d(x2, 0), … , d(xn−1, 0)) ∥p)]

qmn

]

λ

 

 

Theorem 3.5: Λ̆2F = w̆λ,Λ2
2F , where 

 
w̆λ,Λ2

2F = 

X = (Xmn): sup
rs

∑

m∈Irs

 

∑

n∈Irs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

< ∞ 

 

Proof: Let X = (Xmn) ∈ w̆λ,Λ2
2F . Then there exists a 

constant T1 > 0 such that, 
 

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≤ 

sup
rs

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≤ T1 
 
for all r, s ∈ ℕ. Therefore we have X = (Xmn) ∈ Λ̆2F. 

Conversely, let X = (Xmn) ∈ Λ̆2F. Then there exists a 
constant T2 > 0 such that, 
 

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≤ T2 

 
for all m, n and r, s. So, 

 

∑

m∈Irs

∑

n∈Irs

[fmn (‖μmn(x), (d(x1, 0), d(x2, 0), … , d(xn−1, 0))‖
p

)]
qmn

≤ T2 ∑

m∈Irs

∑

n∈Irs

1 ≤ T2, 

 

for all m, n and r, s. Thus X = (Xmn) ∈ w̆λ,Λ2
2F . 

4. Conclusion 

The statistical approach implement of function 
space of 𝚪𝟐 and then well defined of definitions. This 
logic hypothesis of statistical new approaches of 

testing and verification of prove the results. This is 
vital role of that research paper. 
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